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It is the mark of an educated mind to rest satisfied with the degree
of precision which the nature of the subject admits and not to seek

exactness where only an approximation
 is possible—Aristotle

Introduction

Should we attack now or wait three hours for an expected
reconnaissance report?  If we attack now, how many people might
we lose?  How should we use information technologies to
transform our forces?  What mix of heavy and light weapons will
be most survivable in 2020?  When should command and control
be centralized, and when should it be decentralized?  These are but
a few of the many critical questions that face our military leaders.
The massive amount of uncertainty and the dearth of data usually
associated with these questions make them difficult to answer.
Consequently, decision-makers frequently turn to analysts for
information to assist them in making effective choices.

Analysts, in turn, regularly rely on various types of models to
examine complex military issues.  Approaches include equations,
massive simulations, wargames, and (more recently) distillations.
Distillations are relatively simple simulations that attempt to
capture only the salient features of the situation without trying to
model all of the details that could be considered.  All of these tools
have substantial strengths, but also serious shortcomings.  Project
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Albert focuses on Operational Synthesis—that is, the process of
combining the information gleaned from a family of diverse
analytical tools to provide the most compelling analyses [1].  Much
of Project Albert’s efforts have involved the building of
distillations, along with data farming and visualization
environments in which they can be explored.  Our focus is on how
best to broadly search distillations—varying many more factors
simultaneously than in previous approaches—in order to obtain
useful information.

This paper discusses some of the challenges of gleaning
information from high-dimensional models—with an emphasis on
distillations of warfare.  We introduce an expert-driven framework
that automatically looks across a breadth of factors and adaptively
focuses on the significant effects and interactions.  We describe a
variety of designs that may be incorporated into our overall
framework, empirically characterize aspects of their performance
on known response surfaces, and illustrate the potential utility via
explorations on two distillations.  The first exploration examines
the relationship in Irreducible Semi-Autonomous Adaptive Combat
(ISAAC) between squad-level intangibles and the squad’s ability
to reach an extraction point, while the second searches the Dewar
model for non-linearities and remedies to the resultant non-
monotonicities.

Getting Useful Information From Simulations Of Warfare

All models are wrong, but some are useful—George Box [2]

With modern computers, it is feasible to run millions of
computational experiments on distillations.  Before deciding which
cases to run, however, we have to think about what types of
information we are trying to extract from our models.  In their
classic paper, “Design and Analysis of Computer Experiments,”
Sacks et al. [3] wrote that the three primary objectives of computer
experiments are:
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(i) Predicting the response at untried inputs,

(ii) Optimizing a function of the input factors, or

(iii) Tuning [or calibrating] the computer code to physical data.

While this may be true in many fields, how well do these three
primary objectives for computer experiments apply to models of
combat?

According to the dictionary [4], to predict means to “declare in
advance.”  We can certainly run models, get numbers, and make
predictions about potential future events.  However, in order for
our predictions to be scientifically better than those of an
astrologer (who would be much faster and cheaper), we must be
able to provide a credible warranty on the accuracy of our
predictions.  That is, we should be able to scientifically show why
the decision-maker should believe our predictions over those of an
astrologer.  Unfortunately, this is not always easy to do with
models of combat.  To begin with, the data we need in order to
assess the accuracy of our predictions are lacking.  Furthermore,
many of the factors that can be decisive in combat (e.g., morale)
are difficult to know in advance—as witnessed by the consensus
predictions of many thousands of allied casualties and weeks of
ground conflict that were made just prior to Desert Storm.

Military analysts often strive to optimize or improve performance.
For example, we might want to find the equipment, doctrine,
and/or organizational structures that minimize either the expected
number of casualties or the expected time to complete a mission.
Using a particular model and scenario—once a set of inputs that
describe the threat, time, and place of a potential battle have been
specified—we may be able to find model settings that optimize
some particular performance measure.  Of course, since the
veracity of the simulation may be uncertain, any optimum must be
viewed with skepticism.  Moreover, the optimum is likely based on
assumptions regarding a particular opponent and scenario: future
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alliances; how well the various combatants fight; what equipment
they use; the reliability and effectiveness of their equipment; when
and where the battle takes place; the weather; etc.  This means that
the so-called optimum (if it can be found) is almost certainly
conditioned on many uncertain factors, while the likelihood of
them all occurring is negligible.  Thus, in military analyses, we are
often more interested in robust solutions than in optimal ones.
That is, we want equipment and tactics, for example, which work
well across a broad range of plausible scenarios and conditions.

The last major objective of computer experiments identified above
is calibration.  Calibrating our models as data become available
can be a laudable goal.  However, the dearth of such data,
particularly at the force-on-force level, makes quantifying
intangibles such as morale, trust and leadership problematic.
Moreover, calibration is a means to make our models better, not an
analysis end in and of itself.  At times, adding more detail to a
model makes it more cumbersome and brittle, hence less likely to
provide useful information in a timely manner.

Given these limitations, we cannot credibly predict, optimize, or
calibrate performance for numerous military applications.  How,
then, should we be using these models?  Major General Jasper
Welch’s [5] guidance is: “A model is useful if a better decision is
made with the information it adds.”  Captain Wayne Hughes [6]
states that two “primary benefits of model-based studies are to (1)
help explore the issues in a structured way and organize a debate,
and (2) uncover new insights and reveal surprising characteristics.”
Following this advice, we want our designs to help us structure and
organize debates, efficiently uncover new insights, and effectively
communicate our findings to decision-makers.  That is, we are
trying to help people think through complicated issues by
illuminating the consequences of various assumptions, reinforcing
or challenging intuition, and illustrating alternatives that they
might otherwise not have considered.  Thus, rather than optimize
or predict, we seek to: (1) identify significant factors and
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interactions, and (2) find regions, ranges, and thresholds where
interesting things happen.

Our Solution

The purpose of computing is insight, not numbers—Hamming [7]

The goals just stated proscribe the development of an efficient
experimental tool kit and set of search strategies for exploring
distillations.  This is challenging because the number of runs
required to comprehensively explore even the simplest distillation
can be unmanageable.  This is well illustrated by General Welch’s
[8] statement that “1030 is forever.”  In other words, to fully
evaluate all of the combinations of a model containing 100 factors,
each with only two settings, 2100 [≅1030] runs of the model are
necessary.  Using a computer that can evaluate a model run in a
nanosecond, an analyst who started making runs at the (then
estimated) dawn of the universe would just be finishing his
runs—hence it would have taken him forever to explore the model.
Unfortunately, most of our models have more than 100 factors,
many of which are continuous or can take on a large number of
discrete values.  Analysis is further complicated by the uncertainty
corresponding to many (if not most) of the factors.  Therefore,
even with super computers and “simple” models, we typically
cannot use brute force searches on more than about five to ten
factors.  Moore’s Law suggests that we will be able to extend this
only by about two factors (through an increase of two orders of
magnitude in processing power) each decade.  Thus, if we want
computational experiments that look broadly across these models,
we need better designs.

How do we select the best set of experiments from the vast
ensemble of possibilities?  The extensive body of literature on
designing experiments indicates that many of the existing
experimental designs have their roots in agriculture and laboratory
experiments.  That is, they were developed for situations with a
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relatively small number of experimental units (e.g., plots of land,
patients, widgets) on which experiments could be conducted.
Consequently, there are not many readily available tools for high-
dimensional explorations where we can take millions of runs—as
is frequently the case with computational experiments.
Furthermore, most of the existing designs also assume many of the
following: linear effects, sparse effects, negligible higher order
interactions, homogeneous Gaussian error, and a univariate
response.  Experience suggests that these are risky assumptions to
make with models of combat.

Our approach to building search strategies is driven by the
following principles:

• The design must leverage human expertise.  In many
cases, substantial knowledge exists, and can be
harvested, about both the subject area and the model.
We want to use this knowledge, but not be bound by it.

• Most searches should utilize multi-resolution designs.
That is, we need different levels of information from
different factors (or combinations of factors) in the
model—and our designs should reflect this.
Moreover, how factors affect the model’s response
will almost certainly be highly variable.

• The design should be sequential and adaptive.  As we
gain information about the model’s surface, we want
our search to automatically adjust the sampling
scheme to focus on the regions and/or factors that
seem more interesting.  Furthermore, in defense
analysis, we may not know a priori when the analysis
will be due, or the original due date may change
abruptly.  Thus, we want designs that can provide
useful information even if they cannot be run to
completion.

The appropriate design depends on both the type of information
needed and the nature of the model’s response surfaces (or
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landscapes).  In general, for exploring distillations, we want
designs that can look at a large number of factors, isolate
interactions, identify non-linearities, and find thresholds where
responses change dramatically.  To accomplish this, we are
devising strategies that combine some well-known designs with
some newer ones.  In particular, we are looking at search strategies
that use adaptive mixtures of full-factorial (or grid), fractional-
factorial, group screening, random perturbations, Latin hypercube
(and some variants), and frequency-based designs.  The following
list briefly summarizes situations in which the various component
designs are appropriate.

Full-Factorial:  These gridded designs are particularly
useful for looking at a modest number of factors at not too
many levels.  They can be good at finding higher-order non-
linearities and interactions.  They also provide data in a
format that can be used by many visualization tools [9].
Factorial designs can have coarse grids or fine grids,
depending on the numbers of levels for the factors.
Fractional Factorial:  These designs are efficient ways of
examining more factors than with full-factorial designs.  The
cost is that we are unable to estimate some or all higher-
order interactions.
Latin Hypercube:  These excellent space-filling designs are
an efficient means to simultaneously look at many factors
(20 or more) when we are concerned about possible extreme
non-linearity.
Frequency-based Designs:  These designs allow us to
oscillate the levels of multiple factors across runs.  They
may be especially useful when we may not know the
stopping time of the experiments a priori.  The resolution
for each factor depends on its unique oscillation frequency.
Random Perturbations:  These low-resolution designs are
an efficient means of determining the relative sensitivity of
the surface to a large number of factors without directly
assessing individual factor effects.
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Group Screening:  These low-resolution designs are an
excellent means of screening a large number of factors (even
a hundred or more) when we anticipate that only a few may
be significant.  These designs can also be imbedded within
the other designs, dramatically increasing the number of
factors that can be explored within one phase of
experimentation.

Figure 1 illustrates the capability we are building towards.  For the
purposes of this paper, we consider only the distillation portion of
the broader Operational Synthesis structure.  Here, senior and
military decision-makers work with analysts to frame questions
and state hypotheses about which they would like to obtain
information.  Where appropriate, distillation models and scenarios
are selected for investigation; potential factors and preliminary
levels over which they will be varied are also identified.  Expert
judgment is used to partition these factors into classes based on the
type of information we wish to extract from them and a priori
beliefs about how they will affect model outcomes.  This subject
matter and model expertise is typically easy to elicit.  The
partitioning is done within the constraints imposed by processing
limitations, which usually prohibit a brute-force, high-resolution
design for all factors.  Based on this partitioning, a series of
computational experiments are run using a combination of the
designs, and variants thereof.

Of course, anyone who has worked with models of warfare knows
that they are constantly finding unexpected results.  Thus, as we
learn about the model from our initial experiments, the additional
information that we want to extract from the various factors may
change.  In particular, some factors may be more interesting than
initially anticipated.  Our framework accommodates this by
moving them into classes that are sampled more extensively.
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Figure 1:  Our envisioned process uses combinations of statistical designs to
help provide insights into military questions.

Conversely, other factors that we thought might be important will
not have a significant effect on the response.  Consequently, we
will move these factors into lower resolution classes.  This process
continues until enough information is available or the time runs
out.  In the end, we can estimate effects and interactions, identify
extreme points, and find thresholds.  More importantly, however,
is that from within the incomprehensively vast high-dimensional
model space, we identify interesting sub-regions for humans to
investigate further, likely with visualization tools that are
particularly effective in not too many dimensions [9].  For
example, from among scores of factors, we might identify the half
dozen or so that have the greatest impact on responses.  The
analyst and decision-maker can then explore them in detail with
visualization tools.
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A Tool To Sow The Seeds For Successful Data Farming

“Data! Data! Data!” he cried impatiently.  “I can’t make bricks
without clay.”—Sherlock Holmes

A version of this search tool readily usable by Project Albert and
other model explorers is still under development.  While we have a
general framework, considerable work must be done on what
search designs work best, and when, with the various distillations.
Those findings will then need to be implemented in a form readily
accessible to analysts and decision-makers.  Towards that end, we
are empirically studying the effectiveness of the various designs
along two axes.  First, we are assessing the designs’ ability to
detect effects on known response surfaces.  When we generate the
surface, we know the underlying truth; thus, we can determine not
only what our explorations find, but also what they miss.  We are
doing this on surfaces with features that we expect to find in
distillations—that is, high-dimensional surfaces with many factors,
nonlinear responses, rich or sparse effects, significant high-order
interactions, and complex error structures.  Second, we are
studying the effectiveness of portions of the designs on prototype
distillations.

In this section, we illustrate the type of experiments we are running
on known surfaces and summarize our preliminary findings.  We
defer our findings on the explorations of distillations until the
following section.

One approach that plays an important role in our developing
framework is the class of Latin Hypercube (LH) designs.  McKay
et al. [10] developed these constrained, random designs
specifically for computational experiments.  The basic LH design
works as follows.  Suppose that we have k continuous input factors
Xi that we want to search with n samples (or input combinations).
For each of the k factors, a probability density function fi is chosen,
and the range of the factor is divided into n equal probability
segments.  Within each of the probability segments, an input point
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is selected—we usually select the median.  For each of the n input
combinations, for every factor, Xi, independent of the other factors,
an input point is selected by random sampling without
replacement.  This ensures that the entire range of the factor is
explored proportional to the weight we assign to it.  For our
explorations, we usually use Uniform fi.  A Uniform distribution
has the greatest entropy of all distributions whose range is
restricted to a finite interval.  A Uniform distribution also
minimizes the largest gap between each factor’s input values.
Thus, it is good at catching sharp spikes in a surface.

How can we best utilize LH designs in our searches?  For example,
how many samples are needed to detect various effects?  To
answer these questions, we are running LH experiments and
cataloguing the results on a variety of known surfaces.  That is, the
underlying truth is known, though random error is added to our
simulated responses.  Thus, we can evaluate how often the design
correctly (or incorrectly) identifies the significant effects and
interactions.  Figure 2 displays an illustrative example of one such
experiment.  Here, the underlying surface is E[Yi] = 20 + 2x1 +
3x12 + x2 + .5x3 – 3x42 + x8x9 – x1x2, with the inputs’ domains all
being in the interval [–1.0, 1.0].  However, the responses are
corrupted by random Gaussian error (with mean zero and standard
deviation one).  We want to find the probability that an LH design
will detect each of seven different effects and interactions in a
nine-dimensional space as a function of the sample size (n).

In these experiments, quadratic regression is used, and factors with
p-values of less than .05 are counted as detections.  We can see
that, in this particular situation, we need about 60 samples to have
any chance at all of detecting any of the effects.

From this, we can infer that for nonlinear surfaces with
interactions, using quadratic regression to identify effects, LH
designs should have more samples than the combined number of
possible linear, quadratic, and interaction effects.  After exceeding
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this threshold, strong effects are easily identified with a few more
samples.  For weaker effects, the probability of detection increases
steadily with the sample size.  With a large number of samples,
even small effects can be found with high probability.

Figure 2: The probability that linear, quadratic, and interaction effects are
detected as a function of the number of Latin Hypercube samples.  The
factors in the legend are ordered (top to bottom) as they appear in the

equation.

While the goodness of a design must be judged by what it tells us
about the model’s surface, we can also assess the general quality of
a design without regard to a particular surface.  That is, we expect
designs that are orthogonal and have good space-filling properties
to work well on a variety of diverse surfaces.  For LH designs,
Figure 3 displays the average maximum correlation between any
two input factors as a function of the dimension of the space
(number of factors) and the sample size.  Smaller correlations
enhance our ability to fit meta-models to the data.  Given a limit on
the average maximum correlation that we are willing to accept, we
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can determine how many samples are required for a given number
of factors—or, conversely, how many factors we can explore for a
given number of samples.  Note that when we can take thousands
of LH samples, the correlations between input factors using LH
designs are very small even in high-dimensional spaces.

Figure 3: The mean of the maximum pairwise correlation between any two
factors for Latin Hypercube designs, as a function of the number of factors

and samples.  Each point on the graph is the result of 200 Monte Carlo
replications.

We are also examining designs that set factor levels and evaluate
the responses in the frequency domain.  As before, suppose that we
have k continuous factors with associated (finite) ranges.  If we
view the runs as an indexed set (t=1,2,…), then we can assign a
unique driving frequency i to each factor Xi.  The value of Xi

oscillates between its low and high levels according to Xi,t =
midpointi + (half-rangei)(cos(2πt i)).  Figure 4 depicts this
graphically for an experiment involving three factors, where all
have been scaled so that the low and high levels correspond to –1
and +1, respectively.
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Figure 4: Choice of levels for a frequency-based experiment involving three
factors.

Once the sequence of experiments is complete, the variability in
the performance measure is decomposed into its spectral
components.  Important main effects appear as spikes in the
spectrum at the corresponding driving frequencies, while important
quadratic, interaction, and cubic effects will result in spikes at
predictable indicator frequencies.  For fixed k, the driving
frequencies can be chosen to allow complete estimation of all
second-order or third-order terms and interactions [11].

We now describe one set of frequency-based experiments
involving a third-order response surface.  There are a total of 285
potential effects (including main, quadratic, cubic, and
interactions).  We fix the total sample size at two complete cycles
of the lowest frequency—i.e., 8192 observations.  We then
examine the probability of detecting an effect (p-value < .05) for
the following model: E[Y] = 2x1 + x2 + .5x3 + x1

2 + x4
2 + x1x2 +

x2x6 + x1
3 + x5

3 + x1
2x2 + x6

2x7 + x1x2x3 + x8x9x10.  The response is
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then contaminated with additive noise with standard deviation
ranging from 1.0 to 8.0.  Results are provided in Figure 5.  It is not
surprising that we can detect all effects when the error standard
deviation is comparable in magnitude to the factor effects since the
number of data points is large.  However, the method remains
powerful even as the system becomes noisy.  The cubic terms are
the most difficult to detect under high noise and are likely to be
identified as main effects rather than cubic effects.  The dotted line
for “x5 (main)” illustrates this behavior.

Figure 5: The probability that linear, quadratic, cubic and interaction
effects are detected as a function of the error standard deviation.

These frequency-based designs have some added advantages for
exploring distillations.  The runs are easily parallelizable
(segmenting on the run index t), and the designs can be stored
concisely in terms of the driving frequencies.  The output spectrum
provides lack-of-fit information if, for example, we have attempted
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to fit a third-order model, but strong fourth-order effects are also
present.  Finally, should we switch frequency assignments as part
of an adaptive strategy, results can still be tested using regression
rather than the (computationally efficient) Fast Fourier Transform.
We continue to investigate the impact of running partial cycles of
these designs, as well as their performance under alternative error
structures.

These are but a few of the many experiments we have been
running on known surfaces.  Some general findings include the
following:

• The appropriateness of the design depends critically on the
shape of the model’s surface and the feasible number of
samples.  There is no one-fits-all design.

• For relatively smooth surfaces, fractional factorial designs
are an efficient means of looking at a dozen or so factors.

• For high-dimensional surfaces with sparse effects, group
screening designs work well.

• When large samples are feasible (hundreds of thousands or
millions), regular Latin Hypercubes work very well,
particularly on highly non-linear surfaces.

• For high-dimensional searches of highly nonlinear surfaces
when only a few hundred or a few thousand runs can be
taken, special near-orthogonal LH designs work well.

• Frequency-based designs also work well on highly non-
linear surfaces when moderate or large samples are feasible,
even in the presence of substantial error.

• The adaptive sequential framework is richer and more
powerful than any single one-stage design.  One-stage
designs would correspond to categorizing all factors into
two classes: those evaluated (typically at a common level of
resolution) and those ignored.
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Exploring Distillations

This section provides an overview of explorations on distillations
using some of the designs that play important roles in our
framework.  The first example uses and contrasts what can be
found with full-factorial and fractional factorial designs in an
exploration of intangibles in ISAAC.  In the second example,
literally billions of computational experiments—utilizing Latin
Hypercube and fractional factorial designs—search for extreme
non-linearity and ways to mitigate the resultant non-monotonicity
in the Dewar model.

Intangibles in ISAAC

The moral is to the physical as three is to one—Napoleon

The essence of war is a clash between human wills [12].  Marine
Corps warfighting doctrine encompasses the notion that
uncertainty and intangibles will always be present on the
battlefield.  Unfortunately, quantifying how bravery and other
human dimensions affect combat outcomes has proven difficult.
However, since uncontrollable human dimensions will always be
present, we must be able to function effectively with them [13].
The Marine Corps, through Project Albert, is studying the human
dimension of land warfare with distillations, such as the prototype
agent-based combat simulation ISAAC [14].  ISAAC is designed
to allow the user to explore the evolving patterns of unit behavior
that result from the collective interactions of individual agents.

In ISAAC, there are commander and subordinate agents, each of
which makes decisions on where to move and who to engage.
Commander agents also issue orders to their subordinates.  Agents
are given personalities that affect their propensities to hear orders,
listen to orders, and move towards and away from enemy agents,
friendly agents, and a goal.  There are also variables that define the
agents’ capabilities, such as their ability to see the battlefield,
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move, and attrite enemy agents.  In total, there are scores of factors
that can be varied in ISAAC.

To explore how changing the personalities of leaders and
subordinates in ISAAC affects the Blue agents’ ability to reach a
goal, an urban (see Figure 6) and a desert scenario were developed.
The desert scenario is similar in all aspects, except that the terrain
has been removed to simulate a terrain-less environment.

Figure 6: Urban scenario in ISAAC.  Three squads of 13 Blue agents, each
with a local commander, are up against 200 loosely organized Red forces.

The Blue forces are maneuvering through the urban environment to reach
their goal (upper right-hand corner).

In these scenarios, the Red forces are greater in number, less
technologically capable, and have a loosely organized command
and control structure.  The Red forces use aggressive personalities
that are held constant throughout all of the runs.  The Blue forces
are smaller in number, technologically more advanced, and have a
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structured command and control system.  The Blue forces are
divided into three squads, each with a local commander (LC).

A series of full-factorial experiments were run at the Maui High
Performance Computing Center (MHPPC).  Due to input
constraints that existed at that time, only full factorial designs of up
to five factors could be run.  For our runs, we looked at five
factors, each at five levels.  With a hundred replications, this
requires 55*100 = 312,500 runs.  The parameter sets we looked at
included:  the Blue LC’s personality weights; the Blue
subordinate’s personality weights; and a mixed parameter set that
consisted of a combination of interesting personality weights and
sensor range parameters.

Our analysis focused on determining which ISAAC parameters
significantly influence the number of Blue agents killed and the
time it takes for Blue to complete the mission.  Of the factors that
were examined in ISAAC, the ones with the biggest effects on the
outcome, in both scenarios, are the LC’s propensities to move
toward alive Blues, away from alive Reds, and toward the Red
goal.  Losses are reduced for an LC that: (1) has a strong
propensity to mass his forces while maneuvering away from the
enemy, and (2) assigns a relative degree of importance to the
mission of reaching the objective without letting this objective
dominate his actions.  This type of movement propensity relates
directly to the concept of maneuver warfare.

An interesting interaction was uncovered in the exploration of
ISAAC.  Friction—that intangible element that is always present in
stressful combat environments—influences the battlefield in both
scenarios.  Keeping in  mind that the battle involves abstractions of
reality (e.g., the LCs are just dots), ISAAC models friction by
inhibiting the subordinates’ ability to listen to their LC.  In our
ISAAC scenarios, higher friction levels are positively correlated
with Blue losses.  However, friction’s effect on losses is mitigated
by (i.e., interacts with) a strong bond between an LC and his
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subordinates.  Bond is the degree of importance a subordinate
places on staying close to his LC.  Thus, even if the subordinate
agents cannot hear, comprehend, or otherwise act on the
commander’s orders, their losses are reduced if they stay with him.

All of these potential insights must be qualified as being internal to
ISAAC.  Are they real?  We cannot tell without additional data
involving real people, perhaps under real combat conditions.
Nonetheless, there are some interesting insights gleaned regarding
the effectiveness of potential designs.  A close look at the Analysis
of Variance (ANOVA) tables in [15] reveals that most of the
variation in the cases examined result from linear and first-order
interactions.  By using a three-level one-third fractional factorial
design, we can identify all of the same effects and interactions with
only 8100 (35-1*100) runs.  Moreover, about 90 percent of the
variation was in the linear terms; thus, most of the same
conclusions could have been reached with a two-level fractional
factorial design, needing only 1600 (25-1*100) runs.  Another way
to look at this is that when these designs are available at MHPCC,
we will be able to simultaneously vary many more factors.  For
example, a one-eighth fractional factorial design on 14 variables,
each taking two levels, with a hundred replications, requires
204,800 runs.  More detail on these ISAAC explorations can be
found in [15].

Non-linearity in the Dewar Model

For want of a nail . . . the battle was lost

Extreme non-linearity—even chaos—may be a characteristic of
combat.  Indeed, it has been shown to be a characteristic of combat
models (see [16] and [17]).  A combat model that exhibits chaotic
behavior in an appropriate way seems, on an intuitive level, to be
more realistic than a model that does not.  Dewar et al. [18] studied
the behavior of a relatively simple deterministic combat model that
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can be thought of as a distillation of some of the aggregate-level
combat models currently in use.  They found that chaos in the
model generated non-monotonic behavior.  Non-monotonicity is
defined as capability added to one side resulting in worse outcomes
for that side.  Of course, this can be troubling for modelers because
non-monotonic behavior might make a decision-maker question a
model’s validity.  Furthermore, it is an inescapable fact that, no
matter how careful our measurements, the data used in our
analyses are subject to errors.  In chaotic systems, even if the
magnitude of these errors is extremely small, the uncertainty
associated with them creates uncertainty about our knowledge of
the system in the future.

We now briefly summarize the findings in [19] of high-
dimensional explorations of the relatively simple Dewar model.  In
particular, we address two questions:  (1) how widespread is non-
monotonicity in the model? and (2) can the response surface in
non-monotonic regions be made more amenable to interpretation
by decision-makers without destroying the chaos that may be
inherent to both real combat and the model?

Searching for Non-monotonicity

The original Dewar model is a deterministic time-step simulation
of a homogeneous Lanchester square law battle.  In addition to the
attrition rate coefficients, the model has parameters for initial force
sizes, reserves, reinforcement levels, reinforcement delays, and
decision thresholds.  At each time step, depending on the engaged
force ratio and force levels, each side makes decisions on whether
to withdraw or call in reinforcements.  There is a natural symmetry
in the parameters: for each Blue parameter there is a corresponding
Red parameter.  The previous research focused on the initial forces
subspace (i.e., the two-dimensional space defined by initial Blue
force level and initial Red force level) and the binary outcome
measure ‘who wins.’  Figure 7 shows the non-monotonic output of
this subspace in the Dewar model.  In this two-dimensional graph,
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initial Red force levels vary from 10 to 3500 in increments of 10.
Initial Blue force levels vary from 10 to 2000, also in increments
of 10.  Thus, the model was run 69,451 times to generate this
surface.  The black region represents those initial force levels that
result in a Red win.  Consider the following scenario.  Fix the
initial Blue force level at 450, and vary Red from 700 to 1800.
The response trend goes from Blue wins to Red wins, and back and
forth many times.  This non-monotonic trend seems to make it
impossible for a decision-maker to decide whether or not adding
more Red forces is a good idea.

Figure 7: The response surface of the original Dewar model contains a
region of extreme non-monotonicity.
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Of the many investigations of chaos and non-monotonicity in this
model, only one or two of the model’s 18 dimensions had been
examined prior to [19].  Thus, the question must be asked:  are
these findings rare anomalies that occur only in the small portions
of the model that have been examined, or do they generalize to
other measures and dimensions?

The combinatorial possibilities of main effects and interactions
among the 18 dimensions are too great to examine en masse.  The
Dewar model contains 153 pairs of variables.  We choose to search
the subspaces associated with the nine natural pairs of variables,
with a natural pairing consisting of the same parameter for Red and
Blue.  For each of these pairs, we want to see if the surface is
monotonic over a range of settings for the other 16 parameters.  To
do this, we use Latin Hypercube designs on the remaining 16
parameters.  The LH designs each use 16 input combinations.

For each of the nine natural two-dimensional subspaces, 16
surfaces are generated and assessed for non-monotonicity.  In total,
9*16*69,451 = 10,000,944 battles are simulated to generate 144
surfaces.  In designing the sample, we adhere to the original Dewar
model’s basic structure of a smaller, more efficient force opposing
a larger, less effective force; or, if you prefer, a smaller Blue
defensive force opposing a larger Red attacking force.  To preserve
the original model’s tension between opposing forces, we restrict
the domain of the remaining variables to fairly thin hyperplanes,
centered at the nominal values that generated Figure 7.

So, are the previously found results rare anomalies, or do they
generalize?  It turns out that non-monotonicity, with respect to the
measure ‘who wins,’ is prevalent in the model, with non-
monotonicity for ‘who wins’ being found in seven of the nine
two-dimensional subspaces explored.  In fact, five of the nine
subspaces exhibit pervasive non-monotonicity, with it showing up
in more than 80 percent of the surfaces checked.  In total, 54
percent of the surfaces generated contain non-monotonic regions.
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Figure 8: Four of the many two-dimensional subspaces exhibiting non-
monotonic behavior.

Figure 8 shows some striking examples of the newly discovered
widespread non-monotonicity in the model.  The two graphs in the
top row show examples of non-monotonicity with respect to the
MOE ‘length of battle.’  The two bottom graphs in Figure 8 exhibit
non-monotonicity with respect to the MOE ‘who wins’ in the force
ratio reinforcement and reinforcement block size subspaces.

Mitigating Non-monotonicity

The fact that so many subspaces contain non-monotonic behavior
is cause for concern.  The Dewar model contains some of the same
basic processes that many of the larger models use, such as
decision thresholds and attrition processes.  If the interaction of
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these processes in the Dewar model generates such widespread
non-monotonic behavior, then the larger, more complex models
may also be affected by similar non-monotonicities.  What can be
done to generate interpretable responses?  It has been suggested
that stochastic modeling can be a useful way to deal with non-
monotonic behavior in both the simple Dewar model and other,
more complex models (e.g., see [16]).

To examine how making parameters stochastic affects non-
monotonicity in the Dewar model, we ran a fractional factorial
experiment to determine the effect of stochastic modeling on the
trends of the response surface.  The experiment varies nine factors
consisting of the nine types of parameters in the model.  Each
factor has two levels, deterministic and stochastic.  To efficiently
search all nine factors simultaneously, a 29-3, resolution V,
fractional factorial design is used.  This requires 64 different input
settings.  Each surface consists of 69,451 points; at each point,
1000 replications are used to obtain a precise estimate of the
probability that Red wins.  In total, this exploration simulates
almost 4.5 billion battles.

Can stochastic modeling provide interpretable results without
destroying the underlying chaos?  Yes, if done carefully.
Stochastic perturbation usually dramatically reduces the non-
monotonic behavior of the response surface, but can, by some
measures, exacerbate it.  The attrition coefficients are the model
parameters, over the values investigated, that have the greatest
effect on the reduction in non-monotonic behavior.  Figure 9
shows the same surface as Figure 7, with all of the parameters
stochastic.  Unlike the previous graph, Figure 9 appeals to our
intuitionthe outcome remains uncertain until one side or the
other quits the field of battle.  See [19] for more details on these
explorations.
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Figure 9:  When all parameters are stochastic, the response surface
represents the probability of a Red win.  In this graph, the regions where
Red or Blue wins are clearly delineated, and the surface appeals to our

intuition.

Conclusions

Operations Research is a scientific method of providing executive
departments with a quantitative basis for [decision-

making]—Morse and Kimball [20]

Military decision-makers frequently must make decisions about
complex issues that involve billions of dollars and put many lives
at risk.  Our job, as analysts, is to assist them in making the best
possible decision despite a plethora of uncertainties.  Towards that
end, we are building a framework that allows analysts to explore
models in ways that have previously not been feasible.  In
particular, we will be able to see the effects of simultaneously
exploring a large number of factors.  Our initial results look
promising, and the long-run success of this effort will be easy to
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judge.  Our success will be measured by whether or not analysts
and decision-makers find this framework a useful tool for
exploring distillations—and underpinning decisions.
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